11. In the kinetic equation: $v=k \cdot[A]^{a} \cdot[B]^{b}$ expressing the dependence of the reaction rate (v) on the concentration of reacting substances in the reaction: $a A+b B \rightarrow c C+d D$, the sum of the indicators of the degrees of concentrations of the reacting substances (a+b) determines:
A) reaction molecular weight;
B) reaction rate;
C) reaction order;
D) molarity;
E) direction.
12. Determine the reaction order: $a A(g a s)+b B(g a s)+c C(g a s) \rightarrow d D$ (liquid) $+e E$ (solid phase)
A) $a+b+c ;$
B) $(a+b+c) / 2$;
C) $3 / 2(a+b+c)$;
D) $a+b+c / d+e$;
E) $(d+e) / 2$.
13. Determine the reaction order: $a A(g a s)+b B(g a s)+c C$ (solid phase) $\rightarrow d D$ (liquid phase) $+e E$ (solid phase)
A) $a+b+c ;$
B) $(\mathrm{a}+\mathrm{b}) / \mathrm{c}$;
C) $(\mathrm{d}+\mathrm{e}) / 2$;
D) $(\mathrm{a}+\mathrm{b}+\mathrm{c}) /(\mathrm{d}+\mathrm{e})$;
E) $(a+b+c) / 2$.
14. The amount of a substance that turns into a unit of time in a unit of reaction volume characterizes:
A) rate of conversion;
B) reaction rate;
C) apparent speed constant;
D) equilibrium constant;
E) equilibrium concentration.
15. Complete the definition of the Le Chatelier principle: "if an equilibrium system is exerted any influence from outside, then a process takes place in the system ... and brings the system to a new equilibrium":
A) enhancing this effect;
B) attenuating this effect;
C) similar to this effect;
D) eliminating this effect;
E) opposing it.
16. In the system: $4 \mathrm{NH}_{3}(\mathrm{gas})+\mathrm{O}_{2}(\mathrm{gas}) \leftrightarrow 2 \mathrm{~N}_{2}(\mathrm{gas})+6 \mathrm{H}_{2} \mathrm{O}$ (gas), where $\Delta H<0$, the pressure increase will affect the equilibrium as follows:
A) the balance does not change;
B) the balance will shift to the right;
C) the balance will shift to the left;
D) the reaction becomes non-equilibrium;
E) the reaction becomes equilibrium.
17. In the system: $4 \mathrm{NH}_{3}$ (gas) $+\mathrm{O}_{2}$ (gas) $\leftrightarrow 2 \mathrm{~N}_{2}$ (gas) $+6 \mathrm{H}_{2} 0$ (gas), where $\Delta H<0$, the temperature increase will affect the equilibrium in the following way:
